44 research outputs found

    Fault signal propagation through the PMSM motor drive systems

    Get PDF
    This paper describes how a mechanical disturbance on the shaft of a variable speed permanent magnet motor (PMSM) is propagated to the supply input side of the drive system, and therefore may be detected by monitoring specific frequency components in the rectifier input current. The propagation of the disturbance from the torque disturbance, to the motor current, then to the dc link current and finally to the rectifier input current is derived as a series of transfer functions so that both the frequency and the amplitude of the disturbance component in the rectifier input current can be predicted for a specific mechanical disturbance. The limitations to detect the mechanical fault by monitoring only the supply currents are also addressed. Simulation and experimental results are presented to demonstrate the accuracy of the quantitative analysis, and the potential for fault detection using the rectifier input currents

    Fault detection for PMSM motor drive systems by monitoring inverter input currents

    Get PDF
    This paper has proposed a fault detecting method for DC supplied permanent magnet synchronize motor (PMSM) drive systems by monitoring the drive DC input current. This method is based on the fault signal propagation from the torque disturbance on the motor shaft to the inverter input currents. The accuracy of this fault signal propagation is verified by the Matlab simulation and experiment tests with the emulated faulty conditions. The feasible of this approach is shown by the experimental test conducted by the Spectra test rig with the real gearbox fault. This detection scheme is also suitable for monitoring other drive components such as the power converter or the motor itself using only one set of current transducers mounted at the DC input side

    Dinamička simulacija mehaničkih opterećenja ā€“ pristup zasnovan na svojstvima industrijskih elektromotornih pogona

    Get PDF
    Dynamic emulation of mechanical loads presents a modern and interesting approach for testing and validating performance of electrical drives without a real mechanical load included in the test rig. The paper presents an approach to dynamic emulation of mechanical loads when the load torque and inertia mass of emulated load can be significantly greater than that of laboratory test rig. Closed-loop control of load torque and feedforward compensation of inertia and friction torques are used in a test rig. The approach is focused on the use with standard industrial converters. The described method can be used for design and validation of speed control algorithms in mechatronic applications. Experimental results with the emulation of linear loads are presented in end of the paper.Dinamička simulacija mehaničkih opterećenja predstavlja moderan i zanimljiv pristup testiranju i validaciji ponaÅ”anja elektromotornih pogona bez uključenog stvarnog mehaničkog opterećenja u eksperimentalni postav. U radu je predstavljen pristup s dinamičkom simulacijom mehaničkih opterećenja za slučaj kada moment tereta ili moment tromosti simuliranog tereta mogu biti daleko veći od onih dostupnih u eksperimentalnom postavu. U postavu se koristi upravljanje momentom tereta u zatvorenoj petlji uz unaprijednu petlju kompenzacije momenta tromosti i momenata trenja. Pristup je usmjeren na upotrebu standardnih industrijskih pretvarača. Opisana metoda može se koristiti za sintezu i validaciju algoritama za upravljanje po brzini u mehatroničkim primjenama. U radu su predstavljeni eksperimentalni rezultati za slučaj simulacije linearnih tereta

    Evaluation of saliency tracking as an alternative for health monitoring in PMSM-drives under nonstationary conditions

    Get PDF
    This paper evaluates the capability of saliency tracking to assess the health condition of permanent magnet synchronous motor (PMSM) drives operating under nonstationary conditions. The evaluated scheme is based on saliency tracking methods, which are associated to the accurate sensorless control of AC drives without zero speed limitations. In this work two representative saliency tracking architectures are evaluated: High Frequency (HF) injection, and PWM transient excitation. Although a monitoring approach based on HF injection was previously reported, a comparative study to evaluate the most representative saliency tracking schemes to assess health condition in drives was still missing. The aim of this work is to fill out this gap by evaluating and comparing two saliency-based monitoring schemes (one based on HF-injection and the other based on PWM transient excitation) to evaluate their performance in the presence of inter-turn winding faults. Simulation and experimental results are presented which confirm that both schemes offer excellent detection capabilities and that are suitable for drives operating under nonstationary conditions including standstill operation. Significant differences are also found for instance, PWM transient excitation offers improved accuracy since the approach is not affected by the inverter nonlinearities and is suitable for full-speed range applications. The main drawback here is complexity and the hardware requirements. Schemes based on HF-injection proved to be very simple and provide comparable results; however a good performance is only guaranteed for the zero-to-medium speed range applications which limit their applicability

    Condition monitoring approach for permanent magnet synchronous motor drives based on the INFORM method

    Get PDF
    This paper proposes a monitoring scheme based on saliency tracking to assess the health condition of PMSM drives operating under non stationary conditions. The evaluated scheme is based on the INFORM methodology, which is associated to the accurate sensorless control of PM drives without zero speed limitation. The result is a monitoring scheme that is able to detect faults that would be very difficult to evaluate under nonstationary conditions. A relevant aspect of the proposed scheme is that it remains valid for full speed range, and can be used for standstill operation. Additionally, the approach is insensitive to the inverter nonlinearities which enhance the detection capabilities further respect to similar topologies. In this work the proposed approach is evaluated numerically and experimentally in the presence of incipient winding faults and inter-turn short circuits in a PM conventional drive. The obtained results show quick response and excellent detection capabilities not only in the detection of faults, but to determine their magnitude which is vital to avoid further degradation

    Credit Information Sharing and Loan Default in Developing Countries: The Moderating Effect of Banking Market Concentration and National Governance Quality

    Get PDF
    Departing from the existing literature, which associates credit information sharing with improved access to credit in advanced economies, we examine whether credit information sharing can also reduce loan default rate for banks domiciled in developing countries. Using a large dataset covering 879 unique banks from 87 developing countries from every continent, over a nine-year period (i.e., over 6,300 observations), we uncover three new findings. First, we find that credit information sharing reduces loan default rate. Second, we show that the relationship between credit information sharing and loan default rate is conditional on banking market concentration. Third, our findings suggest that governance quality at the country level does not have a strong moderating role on the effect of credit information sharing on loan default rate

    Acoustic Diagnostics of Electrical Origin Fault Modes with Readily Available Consumer-Grade Sensors

    Get PDF
    Acoustic diagnostics, traditionally associated with mechanical fault modes, can potentially solve a wider range of monitoring applications. Typically, fault modes are induced purposefully by the researcher through physical component damage whilst the system is shutdown. This paper presents low-cost real-time fault diagnostics of a previously unreported acute electrical origin fault that manifests sporadically during system operation with no triggering intervention. A suitability study into acoustic measurements from readily available consumer-grade sensors for low-cost real-time diagnostics of audible faults, and a brief overview of the theory and configuration of the wavelet packet transform (including optimal wavelet selection methods) and empirical mode decomposition processing algorithms is also included. The example electrical origin fault studied here is an unpredictable current instability arising with the PWM-controller of a BrushLess DC motor. Experimental trials positively detect 99.9 % of the 1160 resultant high-bandwidth torque transients using acoustic measurements from a USB microphone and a smartphone. While the use of acoustic techniques for detecting emerging electrical origin faults remains largely unexplored, the techniques demonstrated here can be readily adopted for the prevention of catastrophic failure of drive and power electronic components

    Information Asymmetry, Financialisation and Financial Access

    Get PDF
    This study investigates whether information sharing channels that are meant to reduce information asymmetry have led to an increase in financial access. The study employs a Generalised Method of Moments technique using data from 53 African countries during the period from 2004-2011 to examine this linkage. Information sharing channels are theoretically designed to promote the formal financial sector and discourage the informal financial sector. The study uses two information sharing channels: private credit bureaus and public credit registries. The study found that both information sharing channels have a positive and significant impact on financial access. The study also found that public credit registries complement the formal financial sector to promote financial access. The policy implications are discussed
    corecore